Active Brownian Motion with Orientation-Dependent Motility: Theory and Experiments
نویسندگان
چکیده
منابع مشابه
On time-dependent neutral stochastic evolution equations with a fractional Brownian motion and infinite delays
In this paper, we consider a class of time-dependent neutral stochastic evolution equations with the infinite delay and a fractional Brownian motion in a Hilbert space. We establish the existence and uniqueness of mild solutions for these equations under non-Lipschitz conditions with Lipschitz conditions being considered as a special case. An example is provided to illustrate the theory
متن کاملBrownian motion with active fluctuations.
We study the effect of different types of fluctuation on the motion of self-propelled particles in two spatial dimensions. We distinguish between passive and active fluctuations. Passive fluctuations (e.g., thermal fluctuations) are independent of the orientation of the particle. In contrast, active ones point parallel or perpendicular to the time dependent orientation of the particle. We deriv...
متن کاملCanonical active Brownian motion.
Active Brownian motion is the complex motion of active Brownian particles. They are "active" in the sense that they can transform their internal energy into energy of motion and thus create complex motion patterns. Theories of active Brownian motion so far imposed couplings between the internal energy and the kinetic energy of the system. We investigate how this idea can be naturally taken furt...
متن کاملSwarms with canonical active Brownian motion.
We present a swarm model of Brownian particles with harmonic interactions, where the individuals undergo canonical active Brownian motion, i.e., each Brownian particle can convert internal energy to mechanical energy of motion. We assume the existence of a single global internal energy of the system. Numerical simulations show amorphous swarming behavior as well as static configurations. Analyt...
متن کاملon time-dependent neutral stochastic evolution equations with a fractional brownian motion and infinite delays
in this paper, we consider a class of time-dependent neutral stochastic evolution equations with the infinite delay and a fractional brownian motion in a hilbert space. we establish the existence and uniqueness of mild solutions for these equations under non-lipschitz conditions with lipschitz conditions being considered as a special case. an example is provided to illustrate the theory
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Langmuir
سال: 2020
ISSN: 0743-7463,1520-5827
DOI: 10.1021/acs.langmuir.9b03617